In vivo optical frequency domain imaging of human retina and choroid.

نویسندگان

  • Edward C Lee
  • Johannes F de Boer
  • Mircea Mujat
  • Hyungsik Lim
  • Seok H Yun
چکیده

Optical frequency domain imaging (OFDI) using swept laser sources is an emerging second-generation method for optical coherence tomography (OCT). Despite the widespread use of conventional OCT for retinal disease diagnostics, until now imaging the posterior eye segment with OFDI has not been possible. Here we report the development of a highperformance swept laser at 1050 nm and an ophthalmic OFDI system that offers an A-line rate of 18.8 kHz, sensitivity of >92 dB over a depth range of 2.4 mm with an optical exposure level of 550 muW, and deep penetration into the choroid. Using these new technologies, we demonstrate comprehensive human retina, optic disc, and choroid imaging in vivo. This advance enables us to view choroidal vasculature in vivo without intravenous injection of fluorescent dyes and may provide a useful tool for evaluating choroidal as well as retinal diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Frequency Domain Imaging of Human Retina and Choroid

Optical coherence tomography (OCT) has emerged as a practical noninvasive technology for imaging the microstructure of the human eye in vivo. Using optical interferometry to spatiallyresolve backreflections from within tissue, this high-resolution technique provides cross-sectional images of the anterior and posterior eye segments that had previously only been possible with histology. Current c...

متن کامل

Choroidal Mapping; a Novel Approach for Evaluating Choroidal Thickness and Volume

There are a limited number of non-invasive imaging techniques available for assessing the choroid, a structure that may be affected by a variety of retinal disorders or become primarily involved in conditions such as polypoidal choroidal vasculopathy and choroidal tumors. The introduction of enhanced depth imaging optical coherence tomography (EDI-OCT) has provided the advantage of in vivo cros...

متن کامل

High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region.

A high-speed (47,000 A-scans/s), ultrahigh axial resolution Fourier domain optical coherence tomography (OCT) system for retinal imaging at approximately 1060 nm, based on a 1024 pixel linear array, 47 kHz readout rate InGaAs camera is presented. When interfaced with a custom superluminescent diode (lambda(c) = 1020 nm, Deltalambda = 108 nm, Pout = 9 mW), the system provides 3.3 microm axial OC...

متن کامل

Automated retinal shadow compensation of optical coherence tomography images.

We present an automated numerical method of compensating for retinal shadows in the choroid. In this method, signal extinction caused by retinal vessels is estimated by subtracting median A-scans obtained from beneath the retinal vessels and A-scans from the surrounding area. Adding the obtained offset vector to A-scans from beneath the retinal vessels allows compensating for shadows in the cho...

متن کامل

MultiModal approaches to Managing ocular pathology

November/December 2013 SupplemeNt to retiNa toDay 1 The word “choroid” is derived from the Greek words for “forms” and “membrane.” The choroid is a highly vascular and pigmented tissue that lies between the retina and sclera and that has a histologic thickness between 0.10 mm (anterior) and 0.22 mm (posterior pole). The vascular supply of the outer retina is maintained by the choroid, and chang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 14 10  شماره 

صفحات  -

تاریخ انتشار 2006